Bayesian Non-Parametric Mixtures of GARCH(1,1) Models
نویسندگان
چکیده
Traditional GARCH models describe volatility levels that evolve smoothly over time, generated by a single GARCH regime. However, nonstationary time series data may exhibit abrupt changes in volatility, suggesting changes in the underlying GARCH regimes. Further, the number and times of regime changes are not always obvious. This article outlines a nonparametric mixture of GARCH models that is able to estimate the number and time of volatility regime changes by mixing over the Poisson-Kingman process. The process is a generalisation of the Dirichlet process typically used in nonparametric models for time-dependent data provides a richer clustering structure, and its application to time series data is novel. Inference is Bayesian, and a Markov chain Monte Carlo algorithm to explore the posterior distribution is described. The methodology is illustrated on the Standard and Poor’s 500 financial index.
منابع مشابه
Bayesian Semiparametric GARCH Models
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...
متن کاملBayesian Inference Methods for Univariate and Multivariate GARCH Models: a Survey
This survey reviews the existing literature on the most relevant Bayesian inference methods for univariate and multivariate GARCH models. The advantages and drawbacks of each procedure are outlined as well as the advantages of the Bayesian approach versus classical procedures. The paper makes emphasis on recent Bayesian non-parametric approaches for GARCH models that avoid imposing arbitrary pa...
متن کاملThe Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملAn algorithm for nonparametric GARCH modelling
A simple iterative algorithm for nonparametric 1rst-order GARCH modelling is proposed. This method o4ers an alternative to 1tting one of the many di4erent parametric GARCH speci1cations that have been proposed in the literature. A theoretical justi1cation for the algorithm is provided and examples of its application to simulated data from various stationary processes showing stochastic volatili...
متن کاملModeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh
This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively. Furthermore, the study explores the adequate volatility model for the stoc...
متن کامل